HMB 100

Staffa Fixed Displacement Hydraulic Motor

Kawasaki Motors Corp., U.S.A.
Precision Machinery Division
1. GENERAL DESCRIPTION

The HMB100 fixed displacement motor is one of 12 frame sizes in the Kawasaki “Staffa” range of high torque, low speed radial piston motors which extends from 94 to 6800 cm³/r (5.76 to 415 in³/r) capacity. The rugged, well-proven design incorporates hydrostatic balancing techniques to achieve high efficiency, combined with good breakout torque and smooth running capability.

Various features and options are available including, on request, mountings to match competitor interfaces.

The HMB100 is capable of torque outputs up to 7250 Nm (5350 lbf ft) and speeds to 250 r/min with a continuous output of up to 110 kW (147 hp).

The Kawasaki “Staffa” range also includes dual and continuously variable displacement motors, plus matching brakes and gearboxes to extend the available torque range.

2. FUNCTIONAL SYMBOLS

All model types with variants in model code position 4

![Functional Symbols Diagram]
3. MODEL CODE

Features shown in brackets ( ) may be left blank according to requirements. All other features must be specified.

\[(F^{**})-HM(*)B100-(H)*-[V]*-{**}*-[PL**}\]

1. **FLUID TYPE**
   - Blank = Petroleum oil
   - F3 = Phosphate ester (HFD fluid)
   - F11 = Water-based fluids (HFA, HFB & HFC)

2. **MODEL TYPE**
   - Blank = Standard (“HMB”)
   - M = To NCB (UK) specification 463/1981 (“HMMB”)
   - R = Dual mount (front or rear)

3. **SHAFT TYPE**
   - Use “H” prefix code as noted to specify “hollow” shaft with through hole Ø 26.2 (1.03 dia).
   - Hollow shafts are available only with type “SO4” main port connection.
   - (H)P* = Cylindrical shaft with key
   - (H)S* = Cylindrical, 14 splines to BS 3550
   - (H)Z* = Cylindrical shaft to DIN 5480 (W70 x 3 x 22 x 7h)
   - (H)Q* = Female, 24 splines to BS 3550
   - T* = Long tapered, keyed shaft
   - X* = Short tapered, keyed shaft
   - * For installations where shaft is vertically upwards specify “V” after shaft type letter to ensure that additional high level drain port is provided.

4. **MAIN PORT CONNECTIONS**
   - Models with 2 1/4” distributor valve ▲
     - F2 = SAE 1", 4-bolt (UNC) flanges
     - FM2 = SAE 1", 4-bolt (metric) flanges
   - Models with 3” distributor valve
     - SO3 = 6-bolt (UNF) flange (Staffa original valve housing)
     - F3 = SAE 1 1/4", 4-bolt (UNC) flanges
     - FM3 = SAE 1 1/4", 4-bolt (metric) flanges
   - Models with 4” distributor valve ■
     - Must be specified when requiring hollow shafts, type HP, HS, HZ or HQ
     - SO4 = 6-bolt (UNF) flange (Staffa original valve housing)
     - ▲ Gives minimum overall length of HMB100 motor
     - ■ Obligatory for hollow shafts. See increased installation dimensions with 4” valve.

5. **TACHO/ENCODER DRIVE**
   - T = Staffa original tacho drive
   - T1 = Suitable for Hohner 3000 series encoders. (Encoder to be ordered separately).
   - Omit if not required and when specifying shaft types “H***”

6. **DESIGN NUMBER, 3* SERIES**
   - Subject to change. Installation and performance details remain unaltered for design numbers 30 to 39 inclusive.

7. **SPECIAL FEATURES**
   - PL** = non-catalogued features, e.g.:
     - Stainless steel shaft sleeves
     - Alternative encoder and tacho drives
     - Alternative port connections
     - Shaft variants
     - Alternative capacities
     - Special mountings
     - Special paint
   - ** Number assigned as required to specific customer build.
4. PERFORMANCE DATA

Performance data is valid for Staffa HMB100 motors fully run in and operating with petroleum oil. See separate table for pressure and speed limits when using fire-resistant fluids. Leakage values are at fluid viscosity of 50 cSt (232 SUS).

MOTOR DATA

<table>
<thead>
<tr>
<th>Port connection type, see model code</th>
<th>Geometric displacement cm³/r (in³/r)</th>
<th>Average actual running torque Nm/bar (lbf ft/psi)</th>
<th>Max. continuous speed r/min</th>
<th>Max. continuous output kW (hp)</th>
<th>Max. continuous pressure bar (psi)</th>
<th>Max. intermittent pressure bar (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO3, F3, FM3, SO4 F2, FM2</td>
<td>1639 (100)</td>
<td>24.3 (1.23)</td>
<td>250</td>
<td>110 (147)</td>
<td>250 (3625)</td>
<td>293 (4250)</td>
</tr>
<tr>
<td></td>
<td>1639 (100)</td>
<td>24.3 (1.23)</td>
<td>125</td>
<td>80 (107)</td>
<td>250 (3625)</td>
<td>293 (4250)</td>
</tr>
</tbody>
</table>

▲ Other displacements are made available to special order
◆ See “Rating Definitions”, this page

LIMTS FOR FIRE RESISTANT FLUIDS

<table>
<thead>
<tr>
<th>Fluid type</th>
<th>Pressure, bar (psi)</th>
<th>Max. speed r/min</th>
</tr>
</thead>
<tbody>
<tr>
<td>HFA, 5/95% oil-in-water emulsion</td>
<td>103 (1500)</td>
<td>138 (2000)</td>
</tr>
<tr>
<td>HFB, 60/40% water-in-oil emulsion</td>
<td>138 (2000)</td>
<td>172 (2500)</td>
</tr>
<tr>
<td>HFC, water glycol</td>
<td>103 (1500)</td>
<td>138 (2000)</td>
</tr>
<tr>
<td>HFD, phosphate ester</td>
<td>250 (3625)</td>
<td>293 (4250)</td>
</tr>
</tbody>
</table>

RATING DEFINITIONS

◆ CONTINUOUS RATING
For continuous duty the motor must be operating within each of the maximum values for speed, pressure and power.

◆ INTERMITTENT RATING
Operation within the intermittent power rating (up to the maximum continuous speed) is permitted on a 15% duty basis, for periods up to 5 minutes maximum.

◆ INTERMITTENT MAX. PRESSURE
Up to 293 bar (4250 psi) is allowable on the following basis:
(a) Up to 50 r/min: 15% duty for periods up to 5 minutes maximum.
(b) Over 50 r/min: 2% duty for periods up to 30 seconds maximum.

OUTPUT TORQUES

The torque curves indicate the maximum output torque and power of a fully run-in motor for a range of pressures and speeds when operating with zero outlet pressure on petroleum oil of 50 cSt (232 SUS) viscosity. High return line pressures will reduce torque for a given pressure differential.

[Diagram of torque curves]

---

Upper limit of continuous rating envelope, see “Rating definitions” above.
The nomograph allows the median bearing life to be determined for conditions of:

1. No side load and no axial thrust
2. Side load and no axial thrust

To determine L10 life predictions per ISO 281-1-1977 multiply the median figure by 0.2.

**HMB100**

**Example 1** (follow chain dotted line):
- Side load (W): a) 0
- System pressure (P): b) 207 bar (3000 psi)
- Speed (N): c) 300 r/min
- Median bearing life: d) 23 000 hrs
- L10 bearing rating = median x 0.2: 4600 hrs

**Example 2** (follow chain dotted line):
- Side load (W): e) 40 kN (9000 lbf)
- Load offset (A) from motor mounting face: f) 50 mm (2.0 in)
- System pressure (P): g) 207 bar (3000 psi)
- Speed (N): h) 25 r/min
- Median bearing life: i) 65 000 hrs
- L10 bearing rating = median x 0.2: 13 500 hrs

For more precise life prediction, or where axial thrusts are incurred, a computer analysis can be provided by Kawasaki on receipt of machine duty cycle.

**SHAFT STRESS LIMIT**
The shaft stress limit in the nomograph is based on the fatigue rating of shaft types “(H)S” and “(H)P”. Infrequent loading above these limits may be permitted; consult Kawasaki.
This nomograph enables the average volumetric efficiency, crankcase (drain) leakage and “winch slip”/shaft creep speed to be estimated.

Example (follow chain dotted line):
Given:
1. Pressure .................. 170 bar (2500 psi)
2. Speed ............................................... 25 r/min
3. Viscosity ...................... 50 cSt (232 SUS)

To obtain:
4. Volumetric efficiency ..................... 95.0%
5. Crankcase leakage ................... 1.6 l/min (93.0 in³/min)
6. Shaft creep speed .................... 1.2 r/min

The shaft creep speed occurs when the load attempts to rotate the motor against closed ports as may occur, for example, in winch applications.

5. CIRCUIT AND APPLICATION NOTES

STARTING TORQUES
The starting torques shown on the graph on page 4 are average and will vary with system parameters.

LOW SPEED OPERATION
Minimum operating speeds are determined by load conditions (load inertia, drive elasticity, etc.). For operation at speeds below 3 r/min consult Kawasaki.

HIGH BACK PRESSURE
When both inlet and outlet ports are pressurized continuously, the lower pressure in one port must not exceed 70 bar (1000 psi). Consult Kawasaki on applications beyond this limit. Note that high back pressures reduce the effective torque output of the motor.

BOOST PRESSURE
When operating as a motor the outlet pressure should equal or exceed the crankcase pressure. If pumping occurs (i.e. overrunning loads) then a positive pressure, “P”, is required at the motor inlet ports. Calculate “P” according to port connection type being used, from:

\[
P \text{ (bar)} = 1 + \frac{N^2}{D_{\text{bar}}} + C \text{ bar}
\]

\[
P \text{ (psi)} = 14.5 + \frac{N^2}{D_{\text{psi}}} + C \text{ psi}
\]

Where:
N = speed, r/min
C = crankcase pressure
D = see table

<table>
<thead>
<tr>
<th>Port connection type</th>
<th>D value</th>
</tr>
</thead>
<tbody>
<tr>
<td>F2 &amp; FM2</td>
<td>D_{\text{bar}} = 1500 D_{\text{psi}} = 103</td>
</tr>
<tr>
<td>S03, S04, F3, FM3</td>
<td>D_{\text{bar}} = 10 000 D_{\text{psi}} = 690</td>
</tr>
</tbody>
</table>

The flow rate of oil needed for the make-up system can be estimated from the crankcase leakage figure (see Volumetric Efficiency graph above). Allowance should be made for other system losses and also for “fair wear and tear” during the life of the motor, pump and other system components.

COOLING FLOW
Operation within the continuous ratings does not require any additional cooling.

For operating conditions above “continuous”, up to the “intermittent” ratings, additional cooling oil may be required. This can be introduced through the spare crankcase drain hole, or in special cases through the valve spool end cap. Consult Kawasaki about such applications.
MOTOR CASING PRESSURE
With the standard shaft seal fitted, the motor casing pressure should not exceed 3,5 bar (50 psi). On installations with long drain lines a relief valve is recommended to prevent overpressurizing the seal.

Notes:
1. The casing pressure at all times must not exceed either the motor inlet or outlet pressure.
2. High pressure shaft seals are available to special order for casing pressures of:
   - Continuous: 10 bar (150 psi)
   - Intermittent: 15 bar (225 psi)
3. Check installation dimensions (page 8) for maximum crankcase drain fitting depth.

6. HYDRAULIC FLUIDS
Dependent on motor (see Model Code position 1) suitable fluids include:
- Antwear hydraulic oils
- Phosphate esters (HFD fluids)
- Water glycols (HFC fluids) ▲
- 60/40% water-in-oil emulsions (HFB fluids) ▲
- 5/95% oil-in-water emulsions (HFA fluids) ▲

▲ Reduced pressure and speed limits, see page 4.

Viscosity limits when using any fluid except oil-in-water (5/95%) emulsions are:
- Max. off load ........ 2000 cSt (9270 SUS)
- Max. on load .......... 150 cSt (695 SUS)
- Optimum ............... 50 cSt (232 SUS)
- Minimum ............... 25 cSt (119 SUS)

PETROLEUM OIL RECOMMENDATIONS
The fluid should be a good hydraulic grade, non-detergent petroleum oil. It should contain anti-oxidant, anti-foam and demulsifying additives. It must contain antwear or EP additives. Automatic transmission fluids and motor oils are not recommended.

7. TEMPERATURE LIMITS
Ambient min. ..........-30°C (-22°F)
Ambient max. ..........+70°C (158°F)

Max. operating temperature range

<table>
<thead>
<tr>
<th>Petroleum oil</th>
<th>Water-containing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min. -20°C (-4°F)</td>
<td>+10°C (50°F)</td>
</tr>
<tr>
<td>Max.* +80°C (175°F)</td>
<td>+54°C (130°F)</td>
</tr>
</tbody>
</table>

* To obtain optimum service life from both fluid and hydraulic system components 65°C (150°F) normally is the maximum temperature except for water-containing fluids.

8. FILTRATION
Full flow filtration (open circuit), or full boost flow filtration (closed circuit) to ensure system cleanliness of ISO 4406/1986 code 18/14 or cleaner.

9. NOISE LEVELS
The airborne noise level is less than 66,7 dB(A) DIN (70 dB(A) NFPA) throughout the “continuous” operating envelope.

Where noise is a critical factor, installation resonances can be reduced by isolating the motor by elastomeric means from the structure and the return line installation. Potential return line resonances originating from liquid borne noise can be further attenuated by providing a return line back pressure of 2 to 5 bar (30 to 70 psi).

10. POLAR MOMENT OF INERTIA
Typical data: 0,076 kg m² (260 lb in²).

11. MASS
Approx., all models: 144 kg (317 lb).

12. INSTALLATION DATA

GENERAL
- Spigot
  The motor should be located by the mounting spigot on a flat, robust surface using correctly sized bolts. The diametral clearance between the motor spigot and the mounting must not exceed 0,15 mm (0.006 in). If the application incurs shock loading, frequent reversing or high speed running, then high tensile bolts should be used, including one fitted bolt.

- Bolt torque
  The recommended torque wrench settings for the mounting bolts are:
  - M20 bolts ....407±14 Nm (300±10 lbf ft)
  - 3/4” bolts .... 393±14 Nm (290±10 lbf ft)

- Shaft coupling
  Where the motor is solidly coupled to a shaft having independent bearings the shafts must be aligned to within 0,13 mm (0.005 in) TIR.

START-UP
Fill the crankcase with system fluid. Where practical, a short period (30 minutes) of “running in” should be carried out.

CRANKCASE DRAIN

Motor axis horizontal
The crankcase drain must be taken from a position above the horizontal centre line of the motor.

Axis vertical, shaft up
Additional drain port G1/4” (BSPF)

Standard drain port 3/4” - 16 UNF
0,35 bar (5 psi)

An additional G1/4” (BSPF) drain port is provided when the “V” (shaft vertically upwards) designator is given after the shaft type letter in position 3 of the model code. This additional drain should be connected into the main motor casing drain line downstream of a 0,35 bar (5 psi) check valve to ensure lubrication of the upper bearing, see above diagram.

Axis vertical, shaft down
Use any drain position. The drain line should be run above the level of the uppermost bearing; if there is risk of siphoning then a siphon breaker should be fitted.

START-UP
Fill the crankcase with system fluid. Where practical, a short period (30 minutes) of “running in” should be carried out.
13. INSTALLATION DIMENSIONS IN MM (INCHES)

FRONT-MOUNTING MODELS
HMB100 MOTORS WITH TYPE “F3”/“FM3” (1¼” SAE) PORT CONNECTION
See separate drawing for dual-mount model.
See additional views for shaft types and for types “SO3” and “SO4” port connection.
See drawing of dual-mount model for details of types “F2” and “FM2” port connection.

- 3 drain ports ¾”-16 UNF-2B (two normally plugged).
- Pipe fitting must not enter port more than 12 (0.5).
- Pressure gauge connection into each main port; supplied plugged (see table).
- Flow directions for shaft rotation shown.
- Reverse flow directions for opposite rotation.

Port flange bolt tappings

<table>
<thead>
<tr>
<th>Model code</th>
<th>Tapping size</th>
<th>Gauge connections</th>
</tr>
</thead>
<tbody>
<tr>
<td>F3</td>
<td>7/16”-14 UNC-2B x 27.0 (1.06) full thread depth</td>
<td>⅜”-18 UNF-2B, SAE J475</td>
</tr>
<tr>
<td>FM3</td>
<td>M12 x P1.75 x 27.0 (1.06) full thread depth</td>
<td>G⅛” (BSPF)</td>
</tr>
</tbody>
</table>

Ø 0.15 (0.006)
DUAL-MOUNT MODELS
HMRB100 MOTORS WITH TYPE “F2”/“FM2” (1” SAE) PORT CONNECTION
See additional views for shaft types and for types “SO3” and “SO4” port connection.
See drawing of front-mount model for details of types “F3” and “FM3” port connection.

Port flange bolt tappings

<table>
<thead>
<tr>
<th>Model code</th>
<th>Tapping size</th>
</tr>
</thead>
<tbody>
<tr>
<td>F2</td>
<td>( \frac{3}{8} )-16 UNC-2B x 22.0 (0.87) deep</td>
</tr>
<tr>
<td>FM2</td>
<td>M10 x P1.5 x 22.0 (0.87) deep</td>
</tr>
</tbody>
</table>

Ø 0.15 (0.006)
3" VALVE HOUSING WITH 6-BOLT FLANGE, “SO3” IN MODEL CODE POSITION

SHAFT TYPES “P” AND “HP”, MODEL CODE POSITION
Cylindrical shaft with key

Key (supplied) 18.037/18.019 (0.7101/0.7094) wide x 11.99/11.94 (0.472/0.470) thick

Shaft type “P”: Ø 28.0 (1.125 dia), with recess for 31.0 (1.22) i/d x Ø 4.0 (0.157 dia) section O-ring

Mounting face

Flow direction for shaft rotation shown on main drawings, pages 8 and 9. Reverse flow for opposite direction of shaft rotation.

6 holes 3/8"-24 UNF-2B, 16.0 (0.62) deep
44.0 (1.75)
40.0 (1.57)
10.0 (0.375)

Port 2 ▲
Port 1 ▲

Shaft type “HP”: Ø 26.2 (1.03 dia) hole through motor

For shaft types “S” and “HS”
To BS 3550-1963

SHAFT TYPES “S” AND “HS”, MODEL CODE POSITION
Cylindrical shaft with 14 splines to BS 3550-1963

SHAFT TYPES “Z” AND “HZ”, MODEL CODE POSITION
Cylindrical shaft with splines to DIN 5480

Shaft types “HS” and “HZ”:
 Ø 26.2 (1.03 dia) hole through motor

Shaft types “S” and “HZ”:
1/2"-20 UNF-2B x 32.0 (1.25) full thread depth

Shaft type “P”:
1/2"-20 UNF-2B x 32.0 (1.25) full thread depth

Shaft types “Z” and “HZ”:
DIN 5480, W70 x 3 x 22 x 7h

Spline data

For shaft types “S” and “HS”
To BS 3550/SAE J498c (ANSI B92.1 1970 class 5)
Flat root side fit, class 1
Pressure angle 30°
Number of teeth 14
Pitch 6/12
Major diameter 62.553/62.425 (2.4627/2.4577)
Form diameter 55.052 (2.1674)
Minor diameter 54.084/53.525 (2.1293/2.1073)
Pin diameter 8.128 (0.3200)
Diameter over pins 71.592/71.544 (2.8186/2.8167)

For shaft types “Z” and “HZ”
DIN 5480, W70 x 3 x 22 x 7h
**SHAFT TYPES “Q” AND “HQ”, MODEL CODE POSITION**
Female shaft with 24 splines to BS 3550

Note: The “Q” and “HQ” shafts will transmit the maximum torque given on page 4. However, customers should ensure that their own mating shaft will transmit the torque required in their application.

**SHAFT TYPE “T”, MODEL CODE POSITION**
Long taper, with key

**SHAFT TYPE “X”, MODEL CODE POSITION**
Short taper, with key

---

**Spline data**
To BS 3550
Flat root side fit, modified
Pressure angle 30°
Number of teeth 24
Pitch 12/24
Major diameter 53,246/52,916 (2.0963/2.0833)
Minor diameter 48,811/48,884 (1.9217/1.9167)
Pin diameter 3,658 (0.1440)
Pin flattened to 3,560 (0.1400)
Diameter between pins 45,626/45,550 (1.7963/1.7933)

▲ Use mounting face spigot for motor location
Staffa hydraulic motors are manufactured to the highest quality standards in a Kawasaki ISO 9001 certified facility. 
Certification No. 891150