FEATURES

The Kawasaki rotary actuator is suitable to be used for mechanical function involving limited rotation.
- Available of large torque without cumbersome linkages.
- Available of special type such as those with the outer stopper and buffer valve.

ORDERING CODE

<table>
<thead>
<tr>
<th>HR-08</th>
<th>S-04</th>
<th>1</th>
<th>1</th>
<th>C-402</th>
</tr>
</thead>
</table>

Rotary actuator
Diameter of vane
Number of vanes
- S: Single
- D: Double
Width of vane
Shaft type
- 1: Single-output-end shaft
- 2: Double-output-end shaft

Detailed model code (Determined as per detailed specifications) example: "402"…… without buffer
Design number
Shaft output end shape
- 1: Single-keyed (to JIS B1301-1965)
- 2: Splined (to JIS D2001-1959)
- 3: Double-keyed (to JIS B1301-1965)

CONSTRUCTION

Single-vane type

Double-vane type

Note: The number of keys of the wingshaft is one in the single-vane type, and two in the double-vane type.
1. Reciprocating rotary motion
The high-pressure oil supplied into Chamber A through Port B rotates the wingshaft counterclockwise displacing the low-pressure oil out of Port D through Ports E and F.
Conversely, if high-pressure oil is supplied into Chamber C through Port D, the wingshaft rotates clockwise with the low-pressure oil being displaced out of B. (Fig.1)

2. Buffer function
Models HR-17D and HR-20S are provided with the buffer mechanism as described below. (Models HR-08, HR-11, and HR-15 are not.)
(1) A check ball is assembled in Port F. So, when the low-pressure oil is displaced, it is let out through Port E with Port F closed by the check ball.
(2) When the wingshaft rotates until 10-20 deg. before the shaft travel end, the vane of the wingshaft passes Port E. And the confined oil is displaced through E via the narrow clearance between the vane and the end cover. (Fig.2)
(3) As a result, Chamber C is intermittently pressurized higher than the inlet high pressure in Chamber A. The reverse acceleration consequently generated decelerates the wingshaft, and the rotating speed becomes moderately slow.
Special types enable speed control of the wingshaft after the buffer effect.

PRECAUTION ON INSTALLATION

1. Be sure that neither radial nor thrust load is directly applied to the shaft output end. If such loads are unavoidable, install separate bearings to support them.
2. The rotary actuator must be operated within the stroke range of the specified total shaft travel.
3. When the rotary actuator is operated exceeding the maximum angular travel due to the moment of inertia of the attached equipment, provide an external stopper to prevent over-loading the abutment. (Excluding special types with the outer stopper.)
4. In case deceleration is achieved utilizing the hydraulic circuit, prevent the circuit pressure from exceeding the rated pressure due to the moment of inertia of the equipment in the circuit.
5. For disassembly and reassembly, use special tools designed for this unit, with particular care taken against any damage to the sealing part.
SPECIFICATION

Standard type

<table>
<thead>
<tr>
<th>Model</th>
<th>Rated pressure MPa (kgf/cm²)</th>
<th>Output torque N·m (kgf·m)</th>
<th>Total shaft travel rad. (deg.)</th>
<th>Displacement for total travel cm³</th>
<th>Displacement per radian cm³/rad.</th>
<th>Mass kg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>at 6.9 MPa (70kgf/cm²)</td>
<td>at 10.8 MPa (110kgf/cm²)</td>
<td>at 13.7 MPa (140kgf/cm²)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR-08S-04-11C-402</td>
<td>13.7 (140)</td>
<td>108 (11)</td>
<td>226 (23)</td>
<td>4.9 (280)</td>
<td>102</td>
<td>20.8</td>
</tr>
<tr>
<td>HR-11S-06-11D-402</td>
<td></td>
<td>294 (30)</td>
<td>628 (64)</td>
<td>4.9 (280)</td>
<td>280</td>
<td>57.3</td>
</tr>
<tr>
<td>HR-15S-08-11D-402</td>
<td></td>
<td>794 (81)</td>
<td>1,716 (175)</td>
<td>4.9 (280)</td>
<td>753</td>
<td>154</td>
</tr>
<tr>
<td>HR-20S-10-12J</td>
<td></td>
<td>2,256 (230)</td>
<td>4,805 (490)</td>
<td>3.3 (190)</td>
<td>1,450</td>
<td>438</td>
</tr>
<tr>
<td>HR-20S-18-12E</td>
<td>6.9 (70)</td>
<td>3,972 (405)</td>
<td></td>
<td>3.3 (190)</td>
<td>2,500</td>
<td>755</td>
</tr>
<tr>
<td>HR-20S-18-13E</td>
<td></td>
<td>3,972 (405)</td>
<td></td>
<td>3.3 (190)</td>
<td>2,500</td>
<td>755</td>
</tr>
<tr>
<td>HR-20S-18-23E</td>
<td>10.8 (6.9) (110 (70))</td>
<td>3,972 (405)</td>
<td>6,374 (650)</td>
<td></td>
<td>3.3 (190)</td>
<td>2,500</td>
</tr>
<tr>
<td>HR-08D-04-13C-402</td>
<td>13.7 (140)</td>
<td>245 (25)</td>
<td>510 (52)</td>
<td>1.7 (100)</td>
<td>73</td>
<td>41.6</td>
</tr>
<tr>
<td>HR-11D-06-13D-402</td>
<td></td>
<td>677 (69)</td>
<td>1,422 (145)</td>
<td>1.7 (100)</td>
<td>200</td>
<td>115</td>
</tr>
<tr>
<td>HR-15D-08-13D-402</td>
<td></td>
<td>1,814 (185)</td>
<td>3,825 (39)</td>
<td>1.7 (100)</td>
<td>538</td>
<td>308</td>
</tr>
</tbody>
</table>

*If operated using only one of the double-output ends, the HR-20S-18-23 should be used at 6.9 MPa (70kgf/cm²) and below.

Special type

<table>
<thead>
<tr>
<th>Model</th>
<th>Rated pressure MPa (kgf/cm²)</th>
<th>Output torque N·m (kgf·m)</th>
<th>Total shaft travel rad. (deg.)</th>
<th>Displacement for total travel cm³</th>
<th>Displacement per radian cm³/rad.</th>
<th>Mass kg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>at 6.9 MPa (70kgf/cm²)</td>
<td>at 10.8 MPa (110kgf/cm²)</td>
<td>at 13.7 MPa (140kgf/cm²)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR-17D-06-12A-501B</td>
<td>13.7 (140)</td>
<td>1,471 (150)</td>
<td>3,109 (317)</td>
<td>1.57 (90)</td>
<td>395</td>
<td>252</td>
</tr>
<tr>
<td>HR-20S-10-12I-525F</td>
<td></td>
<td>2,256 (230)</td>
<td>4,805 (490)</td>
<td>1.59 (91)</td>
<td>695</td>
<td>438</td>
</tr>
</tbody>
</table>

*These two types are provided with the outer stopper and buffer valve.

WORKING FLUID

- It is recommended that the anti-wear type hydraulic fluid be used as working fluid.
- Some kinds of fire-resistant fluid such as phosphate ester and water glycol require restriction of operating conditions as well as special materials of seal, paint and metal. Therefore, please consult us in advance for our advice indicating the kind of fluid used and specification.
Performance

Output Torque Curve

- **HR-08S-04**: 50 100
- **HR-11S-06**: 60 120
- **HR-15S-08**: 75 150
- **HR-20S-10**: 125 250
- **HR-20S-18**: 210 420
- **HR-08D-04**: 100 200
- **HR-11D-06**: 120 240
- **HR-15D-08**: 150 300
- **HR-17D-06**: 145 290

Maximum Internal Leakage

<table>
<thead>
<tr>
<th>Model</th>
<th>6.9 MPa (70 kgf/cm²)</th>
<th>13.7 MPa (140 kgf/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HR-08S-04</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>HR-11S-06</td>
<td>60</td>
<td>120</td>
</tr>
<tr>
<td>HR-15S-08</td>
<td>75</td>
<td>150</td>
</tr>
<tr>
<td>HR-20S-10</td>
<td>125</td>
<td>250</td>
</tr>
<tr>
<td>HR-20S-18</td>
<td>210</td>
<td>420</td>
</tr>
<tr>
<td>HR-08D-04</td>
<td>100</td>
<td>200</td>
</tr>
<tr>
<td>HR-11D-06</td>
<td>120</td>
<td>240</td>
</tr>
<tr>
<td>HR-15D-08</td>
<td>150</td>
<td>300</td>
</tr>
<tr>
<td>HR-17D-06</td>
<td>145</td>
<td>290</td>
</tr>
</tbody>
</table>

Calculation Formula

1. **Output Torque Calculation Formula**

 \[\text{Output torque (N·m)} = \text{Operating pressure (MPa)} \times \text{Displacement (cm³/rad.)} \times \text{Mechanical efficiency} \]

 \(\text{Output torque (kgf·m)} = \text{Operating pressure (kgf/cm²)} \times \text{Displacement (cm³/rad.)} \times \text{Mechanical efficiency} \times 10^{-2} \)

2. **Required Oil Flow Calculation Formula**

 \[\text{Oil flow (L/min.)} = \text{Displacement (cm³/rad.)} \times \text{Required angular velocity (rad./min.)} \times 10^{-3} + \text{Leaked oil (L/min.)} \]

 \(\text{Oil flow (L/min.)} = \pi /180 \times \text{Displacement (cm³/rad.)} \times \text{Required angular velocity (deg./min.)} \times 10^{-3} + \text{Leaked oil (L/min.)} \)

Reference

Data are indicated in both the SI units and the engineering units. The relationship between these two units are shown below for reference.

<table>
<thead>
<tr>
<th>SI units</th>
<th>Engineering units</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.80665 MPa</td>
<td>100 kgf/cm²</td>
</tr>
<tr>
<td>9.80665 N·m</td>
<td>1 kgf·m</td>
</tr>
<tr>
<td>1 mm²/s</td>
<td>1 cSt</td>
</tr>
<tr>
<td>(\pi) radian</td>
<td>180 deg.</td>
</tr>
</tbody>
</table>
When the V mark on the wingshaft matches that on the end cover, it is positioned at the stroke center. (The V mark on the wingshaft is put on the vane center line.)

Standard type

HR-08S\(^D\)-04, HR-11S\(^D\)-06, HR-15S\(^D\)-08

When the V mark on the wingshaft matches that on the end cover, it is positioned at the stroke center. (The V mark on the wingshaft is put on the vane center line.)

<table>
<thead>
<tr>
<th>Model</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>K</th>
<th>M</th>
<th>N</th>
<th>P</th>
<th>Q</th>
<th>R</th>
<th>S</th>
<th>W</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>HR-15S(^D)-04</td>
<td>130</td>
<td>180</td>
<td>102</td>
<td>78</td>
<td>52</td>
<td>32</td>
<td>6</td>
<td>65</td>
<td>7</td>
<td>M10</td>
<td>16</td>
<td>PF1/4</td>
<td>110</td>
<td>64</td>
<td>8</td>
<td>117</td>
<td>32</td>
</tr>
<tr>
<td>HR-11S(^D)-06</td>
<td>175</td>
<td>220</td>
<td>130</td>
<td>90</td>
<td>66</td>
<td>45</td>
<td>6</td>
<td>100</td>
<td>7</td>
<td>M12</td>
<td>19</td>
<td>PF1/4</td>
<td>150</td>
<td>90</td>
<td>14</td>
<td>140</td>
<td>44</td>
</tr>
<tr>
<td>HR-15S(^D)-08</td>
<td>220</td>
<td>275</td>
<td>162</td>
<td>113</td>
<td>83</td>
<td>70</td>
<td>6</td>
<td>130</td>
<td>7</td>
<td>M12</td>
<td>22</td>
<td>PF1/4</td>
<td>195</td>
<td>116</td>
<td>10</td>
<td>163</td>
<td>62</td>
</tr>
</tbody>
</table>

Note: The above diagrams show the construction of a single-vane type. The number of the keys of the wingshaft is one in the single-vane type, and two in the double-vane type.

HR-20S-10

When the V mark on the wingshaft matches that on the end cover, it is positioned at the stroke center. (The V mark on the wingshaft is put on the vane center line.) Therefore, the wingshaft rotates ±95 deg. from this position to both ends.

HR-20S-18

When the V mark on the wingshaft matches that on the end cover, it is positioned at the stroke center. (The V mark on the wingshaft is put on the vane center line.) Therefore, the wingshaft rotates ±95 deg. from this position to both ends.
When inquiring about the Kawasaki rotary actuator, please inform us of the following items.

1. Application
2. Model
3. Output Torque \(\text{N} \cdot \text{m (kgf} \cdot \text{m)} \)
4. Working Pressure \(\text{MPa (kgf/cm}^2 \) \)
5. Total Shaft Travel \(\text{rad. (deg.)} \)
6. Angular Velocity \(\text{rad./s (deg./s)} \)
7. Frequency
8. Kind of Working Fluid
9. Fluid temperature \(\circ \text{C} \)
KAWASAKI PRECISION MACHINERY NETWORK

Kawasaki Precision Machinery Ltd.

Head Office / Main Plant
234, Matsumoto, Hasetani-cho, Nishi-ku, Kobe 651-2239, Japan
Phone: 81-78-991-1133 Fax: 81-78-991-3186

Tokyo Office
World Trade Center Bldg., 4-1, Hamamatsu-cho 2-chome, Minato-ku, Tokyo 105-6116, Japan
Phone: 81-3-3435-6862 Fax: 81-3-3435-2023

Kobe Office
Kobe Crystal Tower, 1-3, Higashikawasaki-cho 1-chome, Chuo-ku, Kobe, 650-8680, Japan
Phone: 81-78-360-8608 Fax: 81-78-360-8609
http://www.khi.co.jp/kpm/

OVERSEAS SUBSIDIARIES

Kawasaki Precision Machinery (UK) LTD.
Ernesettle Lane, Ernesettle, Plymouth, Devon PL5 2SA, United Kingdom
Phone: 44-1752-364934 Fax: 44-1752-364916
http://www.kpm-eu.com

Kawasaki Precision Machinery of America
Division of Kawasaki Motors Corp., U.S.A.
5080, 36th St. S.E. Grand Rapids, MI 49512, U.S.A.
Phone: 1-616-949-6500 Fax: 1-616-975-3103
http://www.kawasakiipmd.com

Flutek, Ltd.
192-11, Shinchon-dong, Changwon, Kyungnam, 641-370 Korea
Phone: 82-55-286-5551 Fax: 82-55-286-5553

KK HYDRAULICS SALES (SHANGHAI) LTD.
B-908 Far East International Plaza 317 Xianxia Rd, Shanghai 200051
Phone: 86-21-62351606 Fax: 86-21-62357080

KAWSASAKI HEAVY INDUSTRIES, LTD.

OVERSEAS OFFICES

Seoul Office
c/o Kawasaki Machine Systems Korea, Ltd. 3rd Floor (307), Industrial Complex Support Bldg., 637, Kojar-Dong, Namdong-gu, Incheon, 405-817, Korea
Phone: 82-32-821-6941 Fax: 82-32-821-6947

Beijing Office
Room No.2602, China World Tower 1, China World Trade Center, No.1 Jian Guo Men Wai Avenue, Beijing 100004, People’s Republic of China
Phone: 86-10-6505-1350 Fax: 86-10-6505-1351

Shanghai Office
13th Floor, HSBC Tower, 101 Yin Cheng East Road, Pudong New Area, Shanghai 200120, People’s Republic of China
Phone: 86-21-6841-3377 Fax: 86-21-6841-2266

Taipei Office
15th Floor, Fu-Key Bldg., 99 Jen-Ai Road Section 2, Taipei, Taiwan
Phone: 886-2-2322-1752 Fax: 886-2-2322-2009

Bangkok Office
17th Floor, Ramalaid Bldg., 952 Rama IV Road, Bangrak, Bangkok 10500 Thailand
Phone: 66-2-632-9511 Fax: 66-2-632-9515

Kuala Lumpur Office
Letter Box No. 162, 6th Floor, UBN Tower, 10 Jalan P. Ramlee 50250, Kuala Lumpur, Malaysia
Phone: 60-3-2070-5141 Fax: 60-3-2070-5148

Jakarta Office
12th Floor, Skyline Bldg., Jl. M. H. Thamrin 9, Jakarta 10340, Indonesia
Phone: 62-21-314-0737 Fax: 62-21-314-1049

OVERSEAS SUBSIDIARIES

Kawasaki Heavy Industries (U.S.A.), Inc.
599 Lexington Avenue, Suite 3901, New York, NY 10022, U.S.A.
Phone: 1-212-759-4950 Fax: 1-212-759-6291

Houston Branch
333 Clay Street, Suite 4310, Houston, TX 77002-4103, U.S.A.
Phone: 1-713-654-8881 Fax: 1-713-654-8187

Kawasaki do Brasil Indústria e Comércio Ltda.
Avenida Paulista 542-6 Andar, Bela Vista, 01310-000, São Paulo, S.P., Brazil
Phone: 55-11-3289-2388 Fax: 55-11-3289-2788

Kawasaki Heavy Industries (U.K.) Ltd.
4th Floor, 3 St. Helen’s Place, London EC3A 6AG, U.K.
Phone: 44-20-7588-5222 Fax: 44-20-7588-5333

Kawasaki Heavy Industries (Europe) B.V.
7th Floor, Riverstaete, Amstelveld 166, 1079 LH Amsterdam, The Netherlands
Phone: 31-20-6469989 Fax: 31-20-6457275

Kawasaki Heavy Industries (H.K.) Ltd.
Room 4211-16, Sun Hong Ka Centre 30 Harbour Road, Wanchai
Hong Kong People’s Republic of China
Phone: 852-2982-2905 Fax: 852-2982-2905

Kawasaki Heavy Industries (Singapore) Pte. Ltd.
6 Battery Road, #18-04, Singapore 049909
Phone: 65-6225-5133 Fax: 65-6224-9029